Wednesday, May 24, 2017

Pushing Intel Optane Potential: RAID Performance Explored

#Intel 's #Optane Memory is finally shipping, but many can't get past the idea of cache in a high-performance computer, or the steep system requirements. Optane Memory delivers SSD-like performance when you pair it with a hard disk drive, and for some tasks, it offers better performance than a low-cost SSD. Still, some users just want the fastest possible storage system, and caching isn't the best option. Today we examine one option that combines three Optane Memory SSDs together in a RAID 0 array to create a large volume for installing an operating system and a few programs. After our initial article, I've read many reader comments about Optane Memory. It's obvious the name alone causes confusion. Optane "Memory" is actually a storage device. It gets confusing when you add in the fact that the Optane product family has two consumer cache devices and an enterprise-focused add-in card SSD, and then the terminology associated with building an Optane Memory (cache) array on your 200-series chipset. I'm confused, and I wrote it. For this article, we're not worried about creating the caching array that preloads the high-speed device with frequently-accessed data. We are simply using three Optane devices together, forgoing the special software, and just muscling through the workloads with brute force. Optane's 3D XPoint (the physical chips) are all muscle. We can summarize the comments in our first Optane article by simply saying the caching product is only slightly faster than a high-performance SSD. That's kind of true, but it's a sandbagged product. The Optane Memory SSD with 32GB and 16GB of capacity uses either one or two channels. I suspect it's a single-channel device, but Intel will neither confirm nor deny the controller specifications. If we go with my theory, this Intel single-channel controller beats your 8-channel NAND-based SSDs easily. Over time, we'll see more of Optane's capabilities, but for now, we should think of it as a whole new class of memory. You may not see it now, but Intel will soon have an advantage in the SSD game. For the last several years, all the SSD companies have played catch up with Samsung. Samsung currently has the most advanced NAND flash, and the advantage is so great that its TLC NAND often outperforms competing MLC NAND. Samsung's 3D NAND is like a college football team playing a high school football team. If that's the analogy, then Intel's Optane Technology is NFL caliber. I think Optane is off to a great start. We should all remember that the early SLC-based prosumer SSDs were slower than a modern SD card when they first came to market. Over time Optane will get faster, larger, and cheaper. What we want is for Intel to mass produce it, make it cheap, and then give us the highest performing devices at an affordable price. If you think that's going to happen soon, then you don't know Intel. Don't look for low-cost consumer Optane-based SSDs anytime soon, but RAID allows you to game the system if you take on a little risk. Modern SSDs use a form of internal RAID to increase performance. A single NAND die is fast, but it takes many working together to reach the high levels of performance we associate with SSDs. Larger capacities increase the likelihood of more parallel transactions (to a limit). This has both positive and negative side effects. Over time, the capacity of the NAND die increased, and the number of physical chips in the SSDs decreased. That's why many modern SSDs are slower than older models with the same capacity. Optane changes the game entirely. Intel hasn't given us an affordable prosumer Optane SSD, yet, so we're going to make one using a combination of hardware and software you may already have.

http://www.tomshardware.com/reviews/intel-optane-raid-report,5060.html

No comments:

Post a Comment