There is no question that Intel has reached its peak in the #datacenter when it comes to compute. For years now, it has had very little direct competition and only some indirect competition for the few remaining #RISC upstarts and the threat of the newbies with their #ARM architectures. The question now, as we ponder the “ #Skylake ” #Xeon SP processors and their “ #Purley ” platform that launched in July, is this: Is Intel at a local maximum, with another peak off in the distance, perhaps after a decline or perhaps after steady growth or a flat spot, or is this the actual peak? Actual peaks exist, and they are hard to call. #IBM hit its peak with the ES/9000 bi-polar mainframe in 1990, when prices actually went up for mainframe capacity, to a whopping $100,000 per MIPS. #SunMicrosystems hit its actual peak in 2001 with its “ #Cheetah ” UltraSparc-III processors, when prices for systems using these chips also rose faster than performance and bang for the buck actually dropped. These are but two such examples in the enterprise datacenter, but they could turn out to be prophetic with respect to the Xeon platform, particularly with AMD ramping up its Epyc processors, Cavium and Qualcomm fielding credible ARM processors, and IBM getting ready to ramp its Power9 beasts. It is not a coincidence that the mainframe was hit by recession and the Unix and open systems movement back in the late 1980s and early 1990s and IBM reacted as it did, nor is it a coincidence that Sun decided to milk its UltraSparc base when it did in the wake of the dot-com bust. When IT vendors are nearing their peak, they have come under competitive pressures, have saturated their markets, or run up against a manufacturing cost barrier that they cannot get around and their ability to extract ever-increasing profits drops. Those with captive markets facing intense competition often decide to squeeze their customers and get the money now with the hope of competing better in the future. Wall Street demands it, stock-based compensation demands it. So, the knee-jerk reaction is to charge more for each unit of capacity, and clothe in in rhetoric that the resulting system is inherently – and more subtly – more valuable and therefore worth the premium that is now being charged. Intel has certainly done a lot of engineering to justify the cost of the Skylake chips and the Purley platform, the feeds and speeds of which we have gone through at their announcement back in July with a deep dive on the architecture in August. At a set of briefings that Intel has given to The Next Platform, the company’s top brass within the Data Center Group outlined how they evolved the Xeon platform over the past several generations, focusing on performance, agility and efficiency, and security as the areas that mattered most to enterprise customers. Intel’s comparisons ranged from the “Ivy Bridge” Xeon E5 v2 processors through the current Skylake Xeon SPs, which are the result of the convergence of the Xeon E5 line for workhorse two-socket and four-socket systems and the Xeon E7 big memory machines that have four or more sockets. We tend to think of the “Nehalem” Xeon 5500 processors as the foundation of the modern Xeon business, since they are so architecturally different from the Xeons that preceded them (and very much resembled the Opteron processors from rival AMD at the time the Nehalem chips were launched in March 2009). But you can only cram so many generations of stuff onto a chart. Intel’s comparison charts are general and illustrate the features that have been added to the Xeons, and they are interesting in this regard because it reminds us of how much cleverness Intel does etch into its circuits. Advancing processor performance has not been a matter of just shrinking transistors for nearly two decades, and the fact that Intel can squeeze ever-more performance out of a set of transistors is nothing short of stunning. People complain about the slowing of Moore’s Law and Dennard Scaling, but given these constraints, you have to admit Intel – and its rivals – have done pretty well for us and, therefore, for themselves. We tend to think of performance first, so here is how Lisa Spelman, vice president and general manager of Xeon products and the Data Center Group marketing efforts, put all of the highlights from Ivy Bridge through Skylake  The Nehalem Xeons topped out at four cores, the “Westmere” Xeons at six cores, and the “Sandy Bridge” Xeons, the first E5 and E7 chips, came in at eight cores, just so you have a reference for the time before this chart above starts. The Xeon processor has gotten wider and has been packed for more and more features even as we have hit the clock speed ceiling – to be honest, it is because we have hit that ceiling. If you can’t go up, you have to go out. The agility and efficiency features that have been added over time look like this:  This chart demonstrates the finer grained virtualization and other advanced RAS features – that’s short for reliability, availability, and scalability – that Intel has added to each new generation of chips. For the longest time, the RAS features were only in the high-end Xeon E7 chips and Intel commanded a premium for these just as it did for NUMA scalability and memory addressability. Intel still does charge a premium for these and other capacities and features, but it is now doing it with different styles of Xeon SP processors – Platinum, Gold, Silver, and Bronze – that all share a common socket. That Socket P is good for customers and for server makers alike, but let’s not get confused. Intel is charging a premium, bigtime, for its most capacious Xeon SP chips. (We will get into just how much in a second.) Security is becoming more and more of an issue in datacenters, and companies want to have this security be native to the processor and not a bolt on or something that eats up general purpose compute capacity through encryption software. Like other chip makers, Intel has been embedded more and more encryption and hashing functions to the chip as accelerators as the years have gone by, and this in part does justify the price of the processors.
No comments:
Post a Comment