Dell, EMC, Dell Technologies, Cisco,

Monday, July 24, 2017

Making Cloud Bursting a Reality

To stay ahead of the competition, businesses today must run increasingly intricate modeling and simulation algorithms and perform more sophisticated analysis on larger datasets. And they need the results of those compute jobs faster than ever before. To accomplish this requires access to unprecedented amounts of high performance computing ( #HPC ) capacity. Unfortunately, most companies find there are a few significant obstacles in the way. To start, data center square footage and the amount of power and cooling that is available are fixed, preventing many companies from adding the capacity they need quickly or easily. And most companies do not have the budget or staff to install and maintain the additional systems that might only be needed sporadically to meet the compute demands of a single workload or during the early stages of a new project. #CycleComputing has a solution to these problems. Teaming with #DellEMC and #Intel, #CycleComputing complements on-premises #HPC capacity by offering seamless cloud bursting capabilities to meet today’s growing and unpredictable HPC demands. The basic idea is to make optimal use of the space, power, and cooling that is available by filling the data center with the most powerful Dell EMC HPC systems that use the newest generation Intel processors, as well as fast storage and interconnect technologies. And then when additional compute capacity is needed, give companies an easy way to run their jobs externally on cloud compute services like #Amazon Web Services ( #AWS ), #GoogleCloudPlatform, and #Microsoft #Azure. This approach provides two main benefits. First, the most demanding jobs — the ones that need the fastest execution times and require the highest performance cores, memory, and infrastructure – run in-house. When a job requires more capacity than that which is available on-premises, Cycle Computing provides a way for that job to run seamlessly on a cloud service. Second, to ensure the premium HPC capability is used to maximum efficiency, companies can off-load less demanding workflows to compute cloud services. In this way, a job that has a greater impact on the business gets higher priority on the in-house HPC systems and does not get stuck in execution queues. Bringing the right elements together Rather than having one set of software that runs on-site and another that runs on the cloud, Cycle’s approach is more of an infrastructure extension. “Companies need a way to migrate internal workloads to an external cloud without changing code, said Jason Stowe, CEO at Cycle Computing. Working with Dell EMC and Intel, Cycle helps companies make use of best of breed equipment to run their most demanding workloads on-premises. And then gives them essentially an infrastructure extension to complement internal clusters with cloud instances. “When you have infrastructure extension off of a local cluster, it provides higher capacity when needed and keeps queue waits short so you no longer have to wait to run a job.” Cycle Cloud bursting capabilities are available from Dell EMC. The goal is to make efficient use on-site capacity and ensure critical jobs get to run on the most powerful systems. “If you own a Maserati, you can certainly use it to take the kids to school and do other chores,” said Stowe. “But when you need it to race, you want to be sure it is available.” This is accomplished using Cycle Computing’s CycleCloud, which is designed to enable enterprise IT organizations to provide secure and flexible cloud HPC and Big Compute environments to their end users. The solution has workflow features that allow secure, company-controlled, yet easy access to cloud resources. Some of the key features include job submission, monitoring, and administration; scalability from ones to thousands of instances; dynamic scaling of Big Data, Big Compute, and HPC workloads based on work queues; and SubmitOnce™ technology for seamless submission to internal or cloud resources. The newest release of CycleCloud lets companies easily set cost alerts on a per-cluster basis. Companies can set the alert to be dollars per day or per month. This gives organizations a great way to manage consumption and assure that users are not blowing through budgets. Cycle Computing’s cloud bursting technology is helping companies in financial services, oil and gas, life sciences, and other fields make the transition to this new mode of computing. The common traits of such organizations are that they want to speed time to market and time to results, but they are limited by access to compute capacity. In some cases, the solution allowed organizations to carry out work on a single project – work that would not have been possible with existing HPC resources. That was the case with a University of Arizona studies into pharmacological treatments for pain, which includes research that uses protein binding to develop possible treatments. Using CycleCloud software to manage a 5,000 core Google Cloud Preemptible VM cluster running Schrödinger® Glide™ enabled research that scientists never thought possible. The cluster was used to run 20,000 hours of docking computations in four hours for $192. Past work was only able to simulate 50,000 compounds, which yielded a grand total of four possible hits. Using the cloud cluster, the researcher was able to simulate binding of a million compounds in just a few hours. From that million, 600 were hits. In another example, the HyperXite team from the University of California used CycleCloud when it competed in the SpaceX Hyperloop Pod competition. The HyperXite team is studying the fluid dynamics of the fuselage of its new vehicle. HyperXite has optimized the suspension, levitation, and braking systems of a model and has gone through many design changes to reduce drag and lift, and to minimize mass and maximize speed. Typically, a full simulation requires over 5000 CPU-hours. The team leveraged CycleCloud to run ANSYS Fluent™ on Microsoft Azure Big Compute to complete their iterations in 48 hours, enabling them to get results fast enough to make modifications to the design then rerun the simulations until they were able to converge on a final solution. All for less than $600 in simulation costs. Beyond providing HPC capacity for a one-time project, CycleCloud lets companies integrate cloud bursting into their everyday workflows. Quantifiable business results obtained by some key users bear this out. They include: Bringing products to market faster: Using the large scale afforded by the cloud, Western Digital increased the amount of simulation done before designs are physically prototyped. This saves time and money: simulations are completed in 7 hours instead of 30 days, with $2.9M TCO savings compared to purchasing hardware for in-house computation. Improve business processes: After using the cloud for its Federal Reserve stress test, one insurance company began using cloud for month-end risk analysis reports. With a dedicated cluster 4 times larger than the internal resource, they shortened the report run time from 20 days to four. Eventually, they began running their daily reports in the cloud, increasing the resolution and frequency of the modeling and achieving results that more than offset the increased cost. Enable worldwide expansion: Thermo Fisher Scientific’s Ion Reporter platform is used around the world to investigate DNA variation. Using CycleCloud to manage provisioning and configuration means the Thermo Fisher team can focus on developing their software instead of managing the infrastructure. Adding a China-based offering was easy: just copy the configuration and launch a new cluster in the China region. Summary Companies can get CycleCloud from Dell EMC. This cloud bursting solution lets companies maximize the use of their production HPC systems, allowing access to extra capacity when needed without having to expand their data centers or incur CAPEX and OPEX costs for systems that might only be used sparingly

https://www.hpcwire.com/2017/07/24/making-cloud-bursting-reality/

No comments:

Post a Comment